Refine Your Search

Topic

Search Results

Technical Paper

A Method for Technology Selection Based on Benefit, Available Schedule and Budget Resources

2000-10-10
2000-01-5563
The accepted paradigm in aerospace systems design was to design systems sequentially and iteratively to maximize performance based on minimum weight. The traditional paradigm does not work in the rapidly changing global environment. A paradigm shift from the norm of “design for performance” to “design for affordability and quality” has been occurring in recent decades to respond to the changing global environment. Observations were made regarding new tenets needed to bridge the gap from the old to the new. These tenets include new methods and techniques for designing complex systems due to uncertainty and mulit-dimensionality, consideration of the life cycle of the system, and the methods needed to assess breakthrough technologies to meet aggressive goals of the future. The Technology Identification, Evaluation, and Selection method was proposed as a possible solution to the paradigm shift.
Technical Paper

Use of Flight Simulation in Early Design: Formulation and Application of the Virtual Testing and Evaluation Methodology

2000-10-10
2000-01-5590
In current design practices, safety, operational and handling criteria are often overlooked until late design stages due to the difficulty in capturing such criteria early enough in the design cycle and in the presence of limited and uncertain knowledge. Virtual (flight) testing and evaluation, based on autonomous modeling and simulation, is proposed as a solution to this shortcoming. The methodology enables one to evaluate vehicle behavior in relatively complex situations through a series of specific flight scenarios. Bringing this methodology to conceptual design requires the creation of an automatic link between the design database and the autonomous flight simulation environment. This paper describes the creation of such a link and an implementation of the Virtual Testing and Evaluation methodology with the use of an advanced design concept.
Technical Paper

Forecasting Technology Uncertainty in Preliminary Aircraft Design

1999-10-19
1999-01-5631
An evolved version of the Technology Identification, Evaluation, and Selection (TIES) method is presented that provides techniques for quantifying technological uncertainty associated with immature technologies. Uncertainty in this context implies forecasting. Forecasting the impact of immature technologies on a system is needed to provide increased knowledge to a decision-maker in the conceptual and preliminary phases of aircraft design. The increased knowledge allows for proper allocation of company resources and program management. The TIES method addresses the milestones encountered during a technology development program, the sources of uncertainty during that development, a potential method for bounding and forecasting the uncertainty, and a means to quantify the impact of any emerging technology. A proof of concept application was performed on a High Speed Civil Transport concept due to its technically challenging customer requirements.
Technical Paper

Development of Wing Structural Weight Equation for Active Aeroelastic Wing Technology

1999-10-19
1999-01-5640
A multidisciplinary design study considering the impact of Active Aeroelastic Wing (AAW) technology on the structural wing weight of a lightweight fighter concept is presented. The study incorporates multidisciplinary design optimization (MDO) and response surface methods to characterize wing weight as a function of wing geometry. The study involves the sizing of the wing box skins of several fighter configurations to minimum weight subject to static aeroelastic requirements. In addition, the MDO problem makes use of a new capability, trim optimization for redundant control surfaces, to accurately model AAW technology. The response surface methodology incorporates design of experiments, least squares regression, and makes use of the parametric definition of a structural finite element model and aerodynamic model to build response surface equations of wing weight as a function of wing geometric parameters for both AAW technology and conventional control technology.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

An Application of a Technology Impact Forecasting (TIF) Method to an Uninhabited Combat Aerial Vehicle

1999-10-19
1999-01-5633
In today’s atmosphere of lower U.S. defense spending and reduced research budgets, determining how to allocate resources for research and design has become a critical and challenging task. In the area of aircraft design there are many promising technologies to be explored, yet limited funds with which to explore them. In addition, issues concerning uncertainty in technology readiness as well as the quantification of the impact of a technology (or combinations of technologies), are of key importance during the design process. The methodology presented in this paper details a comprehensive and structured process in which to explore the effects of technology for a given baseline aircraft. This process, called Technology Impact Forecasting (TIF), involves the creation of a forecasting environment for use in conjunction with defined technology scenarios. The advantages and limitations of the method will be discussed, as well its place in an overall methodology used for technology infusion.
Technical Paper

Enabling Advanced Design Methods in an Internet-Capable Framework

1999-10-19
1999-01-5578
The enabling of advanced design methods in an internet-capable framework will be discussed in this paper. The resulting framework represents the next generation of design and analysis capability in which engineering decision- making can be done by geographically distributed team members. A new internet technology called the lean-server approach is introduced as a mechanism for granting Web browser access to frameworks and domain analyses. This approach has the underpinnings required to support these next generation frameworks - collaboratories. A historical perspective of design frameworks is discussed to provide an understanding of the design functionality that is expected from framework implementations to insure design technology advancement. Two research areas were identified as being important to the development of collaboratories: design portals and collaborative methods.
Technical Paper

Method for the Exploration of Cause and Effect Links and Derivation of Causal Trees from Accident Reports

1999-04-13
1999-01-1433
The ultimate goal of knowledge-based aircraft design, pilot training and flight operations is to make flight safety an inherent, built-in feature of the flight vehicle, such as its aerodynamics, strength, economics and comfort are. Individual flight accidents and incidents may vary in terms of quantitative characteristics, circumstances, and other external details. However, their cause-and-effect patterns often reveal invariant structure or essential causal chains which may re-occur in the future for the same or other vehicle types. The identification of invariant logical patterns from flight accident reports, time-histories and other data sources is very important for enhancing flight safety at the level of the ‘pilot - vehicle -operational conditions’ system. The objective of this research project was to develop and assess a method for ‘mining’ knowledge of typical cause-and-effect patterns from flight accidents and incidents.
Technical Paper

New Approaches to Conceptual and Preliminary Aircraft Design: A Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology

1998-09-28
985509
This paper critically evaluates the use of Neural Networks (NNs) as metamodels for design applications. The specifics of implementing a NN approach are researched and discussed, including the type and architecture appropriate for design-related tasks, the processes of collecting training and validation data, and training the network, resulting in a sound process, which is described. This approach is then contrasted to the Response Surface Methodology (RSM). As illustrative problems, two equations to be approximated and a real-world problem from a Stability and Controls scenario, where it is desirable to predict the static longitudinal stability for a High Speed Civil Transport (HSCT) at takeoff, are presented. This research examines Response Surface Equations (RSEs) as Taylor series approximations, and explains their high performance as a proven approach to approximate functions that are known to be quadratic or near quadratic in nature.
Technical Paper

Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability

1997-10-01
975585
Over the past few years, modern aircraft design has experienced a paradigm shift from designing for performance to designing for affordability. This paper contains a probabilistic approach that will allow traditional deterministic design methods to be extended to account for disciplinary, economic, and technological uncertainty. The probabilistic approach was facilitated by the Fast Probability Integration (FPI) technique; a technique which allows the designer to gather valuable information about the vehicle's behavior in the design space. This technique is efficient for assessing multi-attribute, multi-constraint problems in a more realistic fashion. For implementation purposes, this technique is applied to illustrate how both economic and technological uncertainty associated with a Very Large Transport aircraft may be assessed.
Technical Paper

A Probabilistic Approach to Multivariate Constrained Robust Design Simulation

1997-10-01
975508
Several approaches to robust design have been proposed in the past. Only few acknowledged the paradigm shift from performance based design to design for cost. The incorporation of economics in the design process, however, makes a probabilistic approach to design necessary, due to the inherent ambiguity of assumptions and requirements as well as the operating environment of future aircraft. The approach previously proposed by the authors, linking Response Surface Methodology with Monte Carlo Simulations, has revealed itself to be cumbersome and at times impractical for multi-constraint, multi-objective problems. In addition, prediction accuracy problems were observed for certain scenarios that could not easily be resolved. Hence, this paper proposes an alternate approach to probabilistic design, which is based on a Fast Probability Integration technique.
Technical Paper

A Technique for Testing and Evaluation of Aircraft Flight Performance During Early Design Phases

1997-10-01
975541
A technique is proposed for examining complex behaviors in the “pilot - vehicle - operational conditions” system using an autonomous situational model of flight. The goal is to identify potentially critical flight situations in the system behavior early in the design process. An exhaustive set of flight scenarios can be constructed and modeled on a computer by the designer in accordance with test certification requirements or other inputs. Distinguishing features of the technique include the autonomy of experimentation (the pilot and a flight simulator are not involved) and easy planning and quick modeling of complex multi-factor flight cases. An example of mapping airworthiness requirements into formal scenarios is presented. Simulation results for various flight situations and aircraft types are also demonstrated.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

1996-10-01
965516
A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.
Technical Paper

New Approaches to Multidisciplinary Synthesis: An Aero-Structures-Control Application Using Statistical Techniques

1996-10-01
965501
An evolving aircraft synthesis simulation environment which offers improvements to existing methods at multiple levels of a design process is described in this paper. As design databases become obsolete due to the introduction of new technologies and classes of vehicles and as sophisticated analysis codes are often too computationally expensive for iterative applications, the design engineer may find a lack of usable information needed for decision making. Within the environment developed in this paper, rapid sensitivity analysis is possible through a unique representation of the relationship between fundamental design variables and system objectives. The combined use of the Design of Experiments and Response Surface techniques provides the ability to form this design relationship among system variables and target values, which is termed design-oriented in nature.
X